Search results
Results from the WOW.Com Content Network
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
To insert a value x into a splay tree: Insert x as with a normal binary search tree. Perform a splay on x. As a result, the newly inserted node x becomes the root of the tree. Alternatively: Use the split operation to split the tree at the value of x to two sub-trees: S and T.
In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.
To search for a given key value, apply a standard binary search algorithm in a binary search tree, ignoring the priorities. To insert a new key x into the treap, generate a random priority y for x. Binary search for x in the tree, and create a new node at the leaf position where the binary search determines a node for x should exist.
To insert a new element, search the tree to find the leaf node where the new element should be added. Insert the new element into that node with the following steps: If the node contains fewer than the maximum allowed number of elements, then there is room for the new element. Insert the new element in the node, keeping the node's elements ordered.
ternary search; ternary search tree (TST) text searching; theta; threaded binary tree; threaded tree; three-dimensional; three-way merge sort; three-way radix quicksort; time-constructible function; time/space complexity; top-down radix sort; top-down tree automaton; top-node; topological order; topological sort; topology tree; total function ...
However, hash tables have a much better average-case time complexity than self-balancing binary search trees of O(1), and their worst-case performance is highly unlikely when a good hash function is used. A self-balancing binary search tree can be used to implement the buckets for a hash table that uses separate chaining.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1