enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

  3. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...

  4. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.For an arbitrarily large number of samples where each sample, involving multiple observations (data points), is separately used to compute one value of a statistic (for example, the sample mean or sample variance) per sample, the sampling distribution is ...

  5. Neyman allocation - Wikipedia

    en.wikipedia.org/wiki/Neyman_allocation

    Neyman allocation, also known as optimum allocation, is a method of sample size allocation in stratified sampling developed by Jerzy Neyman in 1934. This technique determines the optimal sample size for each stratum to minimize the variance of the estimated population parameter for a fixed total sample size and cost.

  6. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    Though the above formula is not exactly correct when the population is finite, the difference between the finite- and infinite-population versions will be small when sampling fraction is small (e.g. a small proportion of a finite population is studied). In this case people often do not correct for the finite population, essentially treating it ...

  7. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    Generally Bessel's correction is an approach to reduce the bias due to finite sample size. Such finite-sample bias correction is also needed for other estimates like skew and kurtosis, but in these the inaccuracies are often significantly larger. To fully remove such bias it is necessary to do a more complex multi-parameter estimation.

  8. Sampling design - Wikipedia

    en.wikipedia.org/wiki/Sampling_design

    Sample design is also a critical component of marketing research and employee research for many organizations. During sample design, firms must answer questions such as: What is the relevant population, sampling frame, and sampling unit?

  9. Sampling fraction - Wikipedia

    en.wikipedia.org/wiki/Sampling_fraction

    To correct for this dependence when calculating the sample variance, a finite population correction (or finite population multiplier) of (N-n)/(N-1) may be used. If the sampling fraction is small, less than 0.05, then the sample variance is not appreciably affected by dependence, and the finite population correction may be ignored. [2] [3]