enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical properties of water and ice - Wikipedia

    en.wikipedia.org/wiki/Optical_properties_of...

    Absorption of light in water. The refractive index of water at 20 °C for visible light is 1.33. [1] The refractive index of normal ice is 1.31 (from List of refractive indices). In general, an index of refraction is a complex number with real and imaginary parts, where the latter indicates the strength of absorption loss at a particular ...

  3. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The second prism should have an index of refraction higher than that of the liquid, so that light only enters the prism at angles smaller than the critical angle for total reflection. This angle can then be measured either by looking through a telescope , [ clarification needed ] or with a digital photodetector placed in the focal plane of a lens.

  4. Electro–optic effect - Wikipedia

    en.wikipedia.org/wiki/Electro–optic_effect

    Using a less strict definition of the electro-optic effect allowing also electric fields oscillating at optical frequencies, one could also include nonlinear absorption (absorption depends on the light intensity) to category a) and the optical Kerr effect (refractive index depends on the light intensity) to category b).

  5. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    In the absence of Doppler shifts, ω does not change on reflection or refraction. Hence, by ( 2 ), the magnitude of the wave vector is proportional to the refractive index. So, for a given ω , if we redefine k as the magnitude of the wave vector in the reference medium (for which n = 1 ), then the wave vector has magnitude n 1 k in the first ...

  6. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.

  7. Angle of incidence (optics) - Wikipedia

    en.wikipedia.org/wiki/Angle_of_incidence_(optics)

    Grazing incidence diffraction is used in X-ray spectroscopy and atom optics, where significant reflection can be achieved only at small values of the grazing angle. Ridged mirrors are designed to reflect atoms coming at a small grazing angle. This angle is usually measured in milliradians. In optics, there is Lloyd's mirror.

  8. Reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Reflection_coefficient

    In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.

  9. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.