Search results
Results from the WOW.Com Content Network
Figure 2 - Failure probability and target service life in performance-based service life models for reinforced concrete structures. Performance-based approaches provide for a real design of durability, based on models describing the evolution in time of degradation processes, and the definition of times at which defined limit states will be ...
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
A clear distinction is made between the ultimate state (US) and the ultimate limit state (ULS). The Ultimate State is a physical situation that involves either excessive deformations sufficient to cause collapse of the component under consideration or the structure as a whole, or deformations exceeding values considered to be the acceptable tolerance.
3 Code of Practices for plain and reinforced concrete etc. IS 456 – 2000 4 Methods of sampling and analysis of concrete IS 1199 – 1959 5 Recommended Guide Lines for Concrete Mix Design IS 10262 – 1982 (F) Curing Compound; 1 Standard test method for water retention & daylight reflection test on concrete. ASTM-C-156809
The relative cross-sectional area of steel required for typical reinforced concrete is usually quite small and varies from 1% for most beams and slabs to 6% for some columns. Reinforcing bars are normally round in cross-section and vary in diameter.
Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries.
A reinforced concrete column is a structural member designed to carry compressive loads, composed of concrete with an embedded steel frame to provide reinforcement. For design purposes, the columns are separated into two categories: short columns and slender columns.
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.