enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Catalan number - Wikipedia

    en.wikipedia.org/wiki/Catalan_number

    The Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after Eugène Catalan, though they were previously discovered in the 1730s by Minggatu. The n-th Catalan number can be expressed directly in terms of the central binomial coefficients by

  3. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    This form of induction, when applied to a set of ordinal numbers (which form a well-ordered and hence well-founded class), is called transfinite induction. It is an important proof technique in set theory, topology and other fields. Proofs by transfinite induction typically distinguish three cases:

  4. Cassini and Catalan identities - Wikipedia

    en.wikipedia.org/wiki/Cassini_and_Catalan_identities

    This explains why some give 1879 and others 1886 as the date for Catalan's identity (Tuenter 2022, p. 314). The Hungarian-British mathematician Steven Vajda (1901–95) published a book on Fibonacci numbers (Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, 1989) which contains the identity carrying his name.

  5. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...

  6. Catalan's conjecture - Wikipedia

    en.wikipedia.org/wiki/Catalan's_conjecture

    Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University.

  7. Catalan's triangle - Wikipedia

    en.wikipedia.org/wiki/Catalan's_triangle

    Catalan's trapezoids are a countable set of number trapezoids which generalize Catalan’s triangle. Catalan's trapezoid of order m = 1, 2, 3, ... is a number trapezoid whose entries (,) give the number of strings consisting of n X-s and k Y-s such that in every initial segment of the string the number of Y-s does not exceed the number of X-s by m or more. [6]

  8. Lobb number - Wikipedia

    en.wikipedia.org/wiki/Lobb_number

    Lobb numbers form a natural generalization of the Catalan numbers, which count the complete strings of balanced parentheses of a given length. Thus, the nth Catalan number equals the Lobb number L 0,n. [2] They are named after Andrew Lobb, who used them to give a simple inductive proof of the formula for the n th Catalan number. [3]

  9. Schröder–Hipparchus number - Wikipedia

    en.wikipedia.org/wiki/Schröder–Hipparchus_number

    Substituting k = 1 into this formula gives the Catalan numbers and substituting k = 2 into this formula gives the Schröder–Hipparchus numbers. [7] In connection with the property of Schröder–Hipparchus numbers of counting faces of an associahedron, the number of vertices of the associahedron is given by the Catalan numbers.