enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    On the left is a unit circle showing the changes ^ and ^ in the unit vectors ^ and ^ for a small increment in angle . During circular motion, the body moves on a curve that can be described in the polar coordinate system as a fixed distance R from the center of the orbit taken as the origin, oriented at an angle θ ( t ) from some reference ...

  3. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    where c ∈ ℝ n is the center of the circle (irrelevant since it disappears in the derivatives), a,b ∈ ℝ n are perpendicular vectors of length ρ (that is, a · a = b · b = ρ 2 and a · b = 0), and h : ℝ → ℝ is an arbitrary function which is twice differentiable at t. The relevant derivatives of g work out to be

  4. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    Potential flow with zero circulation. In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow.

  5. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37] In this setting, the terminal side of an angle A placed in standard position will intersect the unit circle in a point (x,y), where x = cos ⁡ A {\displaystyle x=\cos A} and y = sin ⁡ A {\displaystyle ...

  7. Distance of closest approach - Wikipedia

    en.wikipedia.org/wiki/Distance_of_closest_approach

    Although overlap criteria have been developed, [8] [9] analytic solutions for the distance of closest approach and the location of the point of contact have only recently become available. [10] [11] The details of the calculations are provided in Ref. [12] The Fortran 90 subroutine is provided in Ref. [13] The procedure consists of three steps:

  8. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Consider the great circle that contains the side BC. This great circle is defined by the intersection of a diametral plane with the surface. Draw the normal to that plane at the centre: it intersects the surface at two points and the point that is on the same side of the plane as A is (conventionally) termed the pole of A and it is denoted by A'.

  9. Circle packing theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_theorem

    A circle packing for a five-vertex planar graph. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are ...