enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    The double rotation by α and β in the xy-plane and zw-planes has bivector e 12 α + e 34 β, the sum of two simple bivectors e 12 α and e 34 β which are parallel to the two planes of rotation and have magnitudes equal to the angles of rotation.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.

  4. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  5. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Instead the rotation has two mutually orthogonal planes of rotation, each of which is fixed in the sense that points in each plane stay within the planes. The rotation has two angles of rotation, one for each plane of rotation, through which points in the planes rotate. If these are ω 1 and ω 2 then all points not in the planes rotate through ...

  6. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    The complex plane is associated with two distinct quadratic spaces. For a point z = x + iy in the complex plane, the squaring function z 2 and the norm-squared x 2 + y 2 are both quadratic forms. The former is frequently neglected in the wake of the latter's use in setting a metric on the complex plane.

  7. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...

  8. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do.

  9. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    In numerical linear algebra, a Givens rotation is a rotation in the plane spanned by two coordinates axes. Givens rotations are named after Wallace Givens , who introduced them to numerical analysts in the 1950s while he was working at Argonne National Laboratory .