Search results
Results from the WOW.Com Content Network
With the normal untagged Ethernet frame overhead of 18 bytes and the 1500-byte payload, the Ethernet maximum frame size is 1518 bytes. If a 1500-byte IP packet is to be carried over a tagged Ethernet connection, the Ethernet frame maximum size needs to be 1522 bytes due to the larger size of an 802.1Q tagged frame.
An example of the fragmentation of a protocol data unit in a given layer into smaller fragments. IP fragmentation is an Internet Protocol (IP) process that breaks packets into smaller pieces (fragments), so that the resulting pieces can pass through a link with a smaller maximum transmission unit (MTU) than the original packet size.
Jumbo frames have payloads greater than 1500 bytes. In computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. [1] The payload limit for jumbo frames is variable: while 9000 bytes is the most commonly used limit, smaller and larger limits exist.
On devices like modems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet , Serial ATA , and PCI Express ), quoted rates are for the decoded signal.
IP fragmentation attacks are a kind of computer security attack based on how the Internet Protocol (IP) requires data to be transmitted and processed. Specifically, it invokes IP fragmentation, a process used to partition messages (the service data unit (SDU); typically a packet) from one layer of a network into multiple smaller payloads that can fit within the lower layer's protocol data unit ...
The process is repeated until the MTU is small enough to traverse the entire path without fragmentation. As IPv6 routers do not fragment packets, there is no Don't Fragment option in the IPv6 header. For IPv6, Path MTU Discovery works by initially assuming the path MTU is the same as the MTU on the link layer interface where the traffic originates.
Following the initial design of ATM, networks have become much faster. A 1500 byte (12000-bit) full-size Ethernet frame takes only 1.2 μs to transmit on a 10 Gbit/s network, reducing the motivation for small cells to reduce jitter due to contention. The increased link speeds by themselves do not eliminate jitter due to queuing.
In data communications, the bandwidth-delay product is the product of a data link's capacity (in bits per second) and its round-trip delay time (in seconds). [1] The result, an amount of data measured in bits (or bytes), is equivalent to the maximum amount of data on the network circuit at any given time, i.e., data that has been transmitted but not yet acknowledged.