Search results
Results from the WOW.Com Content Network
Spectral clustering has been successfully applied on large graphs by first identifying their community structure, and then clustering communities. [4] Spectral clustering is closely related to nonlinear dimensionality reduction, and dimension reduction techniques such as locally-linear embedding can be used to reduce errors from noise or ...
Global approaches rely on properties of the entire graph and do not rely on an arbitrary initial partition. The most common example is spectral partitioning, where a partition is derived from approximate eigenvectors of the adjacency matrix, or spectral clustering that groups graph vertices using the eigendecomposition of the graph Laplacian ...
A C++ implementation of Barnes-Hut is available on the github account of one of the original authors. The R package Rtsne implements t-SNE in R. ELKI contains tSNE, also with Barnes-Hut approximation; scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation.
The Laplacian matrix of a directed graph is by definition generally non-symmetric, while, e.g., traditional spectral clustering is primarily developed for undirected graphs with symmetric adjacency and Laplacian matrices. A trivial approach to applying techniques requiring the symmetry is to turn the original directed graph into an undirected ...
While such manifolds are not guaranteed to exist in general, the theory of spectral submanifolds (SSM) gives conditions for the existence of unique attracting invariant objects in a broad class of dynamical systems. [3] Active research in NLDR seeks to unfold the observation manifolds associated with dynamical systems to develop modeling ...
A spectral implementation of DBSCAN is related to spectral clustering in the trivial case of determining connected graph components — the optimal clusters with no edges cut. [12] However, it can be computationally intensive, up to (). Additionally, one has to choose the number of eigenvectors to compute.
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
NMF with the least-squares objective is equivalent to a relaxed form of K-means clustering: the matrix factor W contains cluster centroids and H contains cluster membership indicators. [15] [46] This provides a theoretical foundation for using NMF for data clustering. However, k-means does not enforce non-negativity on its centroids, so the ...