enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    Spectral clustering has been successfully applied on large graphs by first identifying their community structure, and then clustering communities. [4] Spectral clustering is closely related to nonlinear dimensionality reduction, and dimension reduction techniques such as locally-linear embedding can be used to reduce errors from noise or ...

  3. Graph partition - Wikipedia

    en.wikipedia.org/wiki/Graph_partition

    Global approaches rely on properties of the entire graph and do not rely on an arbitrary initial partition. The most common example is spectral partitioning, where a partition is derived from approximate eigenvectors of the adjacency matrix, or spectral clustering that groups graph vertices using the eigendecomposition of the graph Laplacian ...

  4. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    A C++ implementation of Barnes-Hut is available on the github account of one of the original authors. The R package Rtsne implements t-SNE in R. ELKI contains tSNE, also with Barnes-Hut approximation; scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation.

  5. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    The Laplacian matrix of a directed graph is by definition generally non-symmetric, while, e.g., traditional spectral clustering is primarily developed for undirected graphs with symmetric adjacency and Laplacian matrices. A trivial approach to applying techniques requiring the symmetry is to turn the original directed graph into an undirected ...

  6. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    While such manifolds are not guaranteed to exist in general, the theory of spectral submanifolds (SSM) gives conditions for the existence of unique attracting invariant objects in a broad class of dynamical systems. [3] Active research in NLDR seeks to unfold the observation manifolds associated with dynamical systems to develop modeling ...

  7. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    A spectral implementation of DBSCAN is related to spectral clustering in the trivial case of determining connected graph components — the optimal clusters with no edges cut. [12] However, it can be computationally intensive, up to (). Additionally, one has to choose the number of eigenvectors to compute.

  8. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  9. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    NMF with the least-squares objective is equivalent to a relaxed form of K-means clustering: the matrix factor W contains cluster centroids and H contains cluster membership indicators. [15] [46] This provides a theoretical foundation for using NMF for data clustering. However, k-means does not enforce non-negativity on its centroids, so the ...