enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    In the view of Jaynes (1957), [19] thermodynamic entropy, as explained by statistical mechanics, should be seen as an application of Shannon's information theory: the thermodynamic entropy is interpreted as being proportional to the amount of further Shannon information needed to define the detailed microscopic state of the system, that remains ...

  4. Principle of maximum entropy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_maximum_entropy

    The principle of maximum entropy is useful explicitly only when applied to testable information. Testable information is a statement about a probability distribution whose truth or falsity is well-defined. For example, the statements the expectation of the variable is 2.87. and + >

  5. Pinsker's inequality - Wikipedia

    en.wikipedia.org/wiki/Pinsker's_inequality

    In information theory, Pinsker's inequality, named after its inventor Mark Semenovich Pinsker, is an inequality that bounds the total variation distance (or statistical distance) in terms of the Kullback–Leibler divergence. The inequality is tight up to constant factors.

  6. History of information theory - Wikipedia

    en.wikipedia.org/wiki/History_of_information_theory

    the mutual information, and the channel capacity of a noisy channel, including the promise of perfect loss-free communication given by the noisy-channel coding theorem; the practical result of the Shannon–Hartley law for the channel capacity of a Gaussian channel; and of course; the bit - a new way of seeing the most fundamental unit of ...

  7. Information theory and measure theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory_and...

    Many of the concepts in information theory have separate definitions and formulas for continuous and discrete cases. For example, entropy is usually defined for discrete random variables, whereas for continuous random variables the related concept of differential entropy, written (), is used (see Cover and Thomas, 2006, chapter 8).

  8. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    Information theory, developed by Claude E. Shannon in 1948, defines the notion of channel capacity and provides a mathematical model by which it may be computed. The key result states that the capacity of the channel, as defined above, is given by the maximum of the mutual information between the input and output of the channel, where the ...

  9. Statistics - Wikipedia

    en.wikipedia.org/wiki/Statistics

    A typical statistics course covers descriptive statistics, probability, binomial and normal distributions, test of hypotheses and confidence intervals, linear regression, and correlation. [66] Modern fundamental statistical courses for undergraduate students focus on correct test selection, results interpretation, and use of free statistics ...