Search results
Results from the WOW.Com Content Network
In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. For all other assignments of logical values to p and to q the conjunction p ∧ q is false. It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p.
from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true) Importation (()) (()) [35] If p then (if q then r) is equivalent to if p and q then r: Idempotence of disjunction () [103]
Then if is true, that rules out the first disjunct, so we have . In short, P → Q {\displaystyle P\to Q} . [ 3 ] However, if P {\displaystyle P} is false, then this entailment fails, because the first disjunct ¬ P {\displaystyle \neg P} is true, which puts no constraint on the second disjunct Q {\displaystyle Q} .
Implication alone is not functionally complete as a logical operator because one cannot form all other two-valued truth functions from it.. For example, the two-place truth function that always returns false is not definable from → and arbitrary propositional variables: any formula constructed from → and propositional variables must receive the value true when all of its variables are ...
In most logical systems, one proves a statement of the form "P iff Q" by proving either "if P, then Q" and "if Q, then P", or "if P, then Q" and "if not-P, then not-Q". Proving these pairs of statements sometimes leads to a more natural proof, since there are not obvious conditions in which one would infer a biconditional directly.
Thus, logical truths such as "if p, then p" can be considered tautologies. Logical truths are thought to be the simplest case of statements which are analytically true (or in other words, true by definition). All of philosophical logic can be thought of as providing accounts of the nature of logical truth, as well as logical consequence. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of noncontradiction. Since assuming P to be false leads to a contradiction, it is concluded that P is ...