Search results
Results from the WOW.Com Content Network
The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs. In other words, if P {\displaystyle P} is true, then Q {\displaystyle Q} must also be true, while if Q {\displaystyle Q} is not true, then P {\displaystyle P} cannot be true either; additionally, when P {\displaystyle ...
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. For all other assignments of logical values to p and to q the conjunction p ∧ q is false. It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p.
from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true) Importation (()) (()) [35] If p then (if q then r) is equivalent to if p and q then r: Idempotence of disjunction () [103]
If a statement's inverse is false, then its converse is false (and vice versa). If a statement's negation is false, then the statement is true (and vice versa). If a statement (or its contrapositive) and the inverse (or the converse) are both true or both false, then it is known as a logical biconditional.
For example, even though material conditionals with false antecedents are vacuously true, the natural language statement "If 8 is odd, then 3 is prime" is typically judged false. Similarly, any material conditional with a true consequent is itself true, but speakers typically reject sentences such as "If I have a penny in my pocket, then Paris ...
Implication alone is not functionally complete as a logical operator because one cannot form all other two-valued truth functions from it.. For example, the two-place truth function that always returns false is not definable from → and arbitrary propositional variables: any formula constructed from → and propositional variables must receive the value true when all of its variables are ...
The white area shows where the statement is false. Let S be a statement of the form P implies Q (P → Q). Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent.