enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Hydraulic conductivity - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_conductivity

    In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]

  4. Physical properties of soil - Wikipedia

    en.wikipedia.org/wiki/Physical_properties_of_soil

    The soil bulk density of cultivated loam is about 1.1 to 1.4 g/cm 3 (for comparison water is 1.0 g/cm 3). [48] Contrary to particle density, soil bulk density is highly variable for a given soil, with a strong causal relationship with soil biological activity and management strategies. [ 49 ]

  5. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    Darcy's law states that the volume of flow of the pore fluid through a porous medium per unit time is proportional to the rate of change of excess fluid pressure with distance. The constant of proportionality includes the viscosity of the fluid and the intrinsic permeability of the soil. For the simple case of a horizontal tube filled with soil

  6. p-y method - Wikipedia

    en.wikipedia.org/wiki/P-y_method

    P–y graphs are graphs which relate the force applied to soil to the lateral deflection of the soil. In essence, non-linear springs are attached to the foundation in place of the soil. The springs can be represented by the following equation:

  7. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is Δ E p = 1 2 k ( r 2 − r 1 ) 2 {\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}} where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

  9. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    1.380 649 × 10 −23 J⋅K1: 0 ... Fermi coupling constant: 1.166 3787 (6) ... While the values of the physical constants are independent of the system of units ...