Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
P–y graphs are graphs which relate the force applied to soil to the lateral deflection of the soil. In essence, non-linear springs are attached to the foundation in place of the soil. The springs can be represented by the following equation:
In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]
Darcy's law states that the volume of flow of the pore fluid through a porous medium per unit time is proportional to the rate of change of excess fluid pressure with distance. The constant of proportionality includes the viscosity of the fluid and the intrinsic permeability of the soil. For the simple case of a horizontal tube filled with soil
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is = where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
The first modern theoretical models for soil consolidation were proposed in the 1920s by Terzaghi and Fillunger, according to two substantially different approaches. [1] The former was based on diffusion equations in eulerian notation, whereas the latter considered the local Newton’s law for both liquid and solid phases, in which main variables, such as partial pressure, porosity, local ...
An American Airlines flight nearly crashed into a mountain range in Hawaii — but escaped tragedy when it was ordered to rapidly gain altitude, officials said Friday. Los Angeles-bound Flight 298 ...
The soil bulk density of cultivated loam is about 1.1 to 1.4 g/cm 3 (for comparison water is 1.0 g/cm 3). [48] Contrary to particle density, soil bulk density is highly variable for a given soil, with a strong causal relationship with soil biological activity and management strategies. [ 49 ]