enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    The skewness is not directly related to the relationship between the mean and median: a distribution with negative skew can have its mean greater than or less than the median, and likewise for positive skew. [2] A general relationship of mean and median under differently skewed unimodal distribution.

  3. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Comparison of mean, median and mode of two log-normal distributions with different skewness. The mode is the point of global maximum of the probability density function. In particular, by solving the equation (⁡) ′ =, we get that: ⁡ [] =.

  4. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.

  5. Skew normal distribution - Wikipedia

    en.wikipedia.org/wiki/Skew_normal_distribution

    The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The Gaussian distribution belongs to the family of stable distributions which are the attractors of sums of independent, identically distributed distributions whether or not the mean or variance is finite. Except for the Gaussian which is a limiting case, all stable distributions have heavy tails and infinite variance.

  7. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The accompanying plot of skewness as a function of variance and mean shows that maximum variance (1/4) is coupled with zero skewness and the symmetry condition (μ = 1/2), and that maximum skewness (positive or negative infinity) occurs when the mean is located at one end or the other, so that the "mass" of the probability distribution is ...

  8. Medcouple - Wikipedia

    en.wikipedia.org/wiki/Medcouple

    The actual medcouple is the median of the bottom distribution, marked at 0.188994 with a yellow line. In statistics, the medcouple is a robust statistic that measures the skewness of a univariate distribution. [1] It is defined as a scaled median difference between the left and right half of a distribution.

  9. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Probability plots for distributions other than the normal are computed in exactly the same way. The normal quantile function Φ −1 is simply replaced by the quantile function of the desired distribution. In this way, a probability plot can easily be generated for any distribution for which one has the quantile function.