enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2); m 1 is the first mass; m 2 is the second mass; r is the distance between the centers of the masses.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  4. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    Cavendish's result provided additional evidence for a planetary core made of metal, an idea first proposed by Charles Hutton based on his analysis of the 1774 Schiehallion experiment. [18] Cavendish's result of 5.4 g·cm −3, 23% bigger than Hutton's, is close to 80% of the density of liquid iron, and 80% higher than the density of the Earth's ...

  5. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    The barycenter is the point between two objects where they balance each other; it is the center of mass where two or more celestial bodies orbit each other. When a moon orbits a planet, or a planet orbits a star, both bodies are actually orbiting a point that lies away from the center of the primary (larger) body. [25]

  6. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's third law must be modified in special relativity. The third law refers to the forces between two bodies at the same moment in time, and a key feature of special relativity is that simultaneity is relative. Events that happen at the same time relative to one observer can happen at different times relative to another.

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Point P between earth and moon is the point of equilibrium. In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. [ 6 ] A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted ...

  9. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    Orbit insertion. v. t. e. In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. [ 1 ] Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars.