enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...

  3. Threaded binary tree - Wikipedia

    en.wikipedia.org/wiki/Threaded_binary_tree

    "A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...

  4. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    Henzinger and King [2] suggest to represent a given tree by keeping its Euler tour in a balanced binary search tree, keyed by the index in the tour. So for example, the unbalanced tree in the example above, having 7 nodes, will be represented by a balanced binary tree with 14 nodes, one for each time each node appears on the tour.

  5. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    To define a binary tree, the possibility that only one of the children may be empty must be acknowledged. An artifact, which in some textbooks is called an extended binary tree, is needed for that purpose. An extended binary tree is thus recursively defined as: [11] the empty set is an extended binary tree

  6. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  7. m-ary tree - Wikipedia

    en.wikipedia.org/wiki/M-ary_tree

    An example of a m-ary tree with m=5. In graph theory, an m-ary tree (for nonnegative integers m) (also known as n-ary, k-ary or k-way tree) is an arborescence (or, for some authors, an ordered tree) [1] [2] in which each node has no more than m children. A binary tree is an important case where m = 2; similarly, a ternary tree is one where m = 3.

  8. Random binary tree - Wikipedia

    en.wikipedia.org/wiki/Random_binary_tree

    An extended binary tree, showing internal nodes as yellow circles and external nodes as red squares. A binary tree is a rooted tree in which each node may have up to two children (the nodes directly below it in the tree), and those children are designated as being either left or right.

  9. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    The tree rotation renders the inorder traversal of the binary tree invariant. This implies the order of the elements is not affected when a rotation is performed in any part of the tree. Here are the inorder traversals of the trees shown above: Left tree: ((A, P, B), Q, C) Right tree: (A, P, (B, Q, C))