enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...

  3. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many respects, a key difference is that the surface does not, in general, pass through the central control points; rather, it is "stretched" toward them as though each were an attractive force.

  4. Composite Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Composite_Bézier_curve

    Béziergon – The red béziergon passes through the blue vertices, the green points are control points that determine the shape of the connecting Bézier curves. In geometric modelling and in computer graphics, a composite Bézier curve or Bézier spline is a spline made out of Bézier curves that is at least continuous. In other words, a ...

  5. Variation diminishing property - Wikipedia

    en.wikipedia.org/wiki/Variation_diminishing_property

    Using the above points, we say that since the Bézier curve B is the limit of these polygons as r goes to , it will have fewer intersections with a given plane than R i for all i, and in particular fewer intersections that the original control polygon R. This is the statement of the variation diminishing property.

  6. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.

  7. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  8. Pierre Bézier - Wikipedia

    en.wikipedia.org/wiki/Pierre_Bézier

    Pierre Étienne Bézier (1 September 1910 – 25 November 1999; [pjɛʁ etjɛn bezje]) was a French engineer and one of the founders of the fields of solid, geometric and physical modelling as well as in the field of representing curves, especially in computer-aided design and manufacturing systems. [1]

  9. Paul de Casteljau - Wikipedia

    en.wikipedia.org/wiki/Paul_de_Casteljau

    Paul de Casteljau (19 November 1930 – 24 March 2022) was a French physicist and mathematician. In 1959, while working at Citroën, he developed an algorithm for evaluating calculations on a certain family of curves, which would later be formalized and popularized by engineer Pierre Bézier, leading to the curves widely known as Bézier curves.