Search results
Results from the WOW.Com Content Network
Gibbard's theorem can be proven using Arrow's impossibility theorem. [citation needed] Gibbard's theorem is itself generalized by Gibbard's 1978 theorem [3] and Hylland's theorem, [4] which extend these results to non-deterministic processes, i.e. where the outcome may not only depend on the agents' actions but may also involve an element of ...
The Gibbard–Satterthwaite theorem is a theorem in social choice theory. It was first conjectured by the philosopher Michael Dummett and the mathematician Robin Farquharson in 1961 [ 1 ] and then proved independently by the philosopher Allan Gibbard in 1973 [ 2 ] and economist Mark Satterthwaite in 1975. [ 3 ]
Gibbard's theorem shows that any strategyproof game form (i.e. one with a dominant strategy) with more than two outcomes is dictatorial. The Gibbard–Satterthwaite theorem is a special case showing that no deterministic voting system can be fully invulnerable to strategic voting in all circumstances, regardless of how others vote.
The revelation principle shows that, while Gibbard's theorem proves it is impossible to design a system that will always be fully invulnerable to strategy (if we do not know how players will behave), it is possible to design a system that encourages honesty given a solution concept (if the corresponding equilibrium is unique). [3] [4]
Gibbard's theorem shows that no deterministic single-winner voting method can be completely immune to strategy, but makes no claims about the severity of strategy or how often strategy succeeds. Later results show that some methods are more manipulable than others.
Gibbard's theorem is itself generalized by Gibbard's 1978 theorem [11] and Hylland's theorem, which extend these results to non-deterministic processes, i.e. where the outcome may not only depend on the agents' actions but may also involve an element of chance. The Gibbard's theorem assumes the collective decision results in exactly one winner ...
For premium support please call: 800-290-4726 more ways to reach us
Gershgorin circle theorem (matrix theory) Gibbard–Satterthwaite theorem (voting methods) Girsanov's theorem (stochastic processes) Glaisher's theorem (number theory) Gleason's theorem (Hilbert space) Glivenko's theorem (mathematical logic) Glivenko's theorem (probability) Glivenko–Cantelli theorem (probability) Goddard–Thorn theorem ...