enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    2D keypoints and segmentations for the Stanford Dogs Dataset. 2D keypoints and segmentations provided. 12,035 Labelled images 3D reconstruction/pose estimation 2020 [187] B. Biggs et al. The Oxford-IIIT Pet Dataset 37 categories of pets with roughly 200 images of each. Breed labeled, tight bounding box, foreground-background segmentation. ~ 7,400

  3. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    Semantic segmentation is an approach detecting, for every pixel, the belonging class. [18] For example, in a figure with many people, all the pixels belonging to persons will have the same class id and the pixels in the background will be classified as background.

  4. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...

  5. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    Connected-component labeling (CCL), connected-component analysis (CCA), blob extraction, region labeling, blob discovery, or region extraction is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic.

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  7. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    The examples are usually administered several times as iterations. The training utilizes competitive learning. When a training example is fed to the network, its Euclidean distance to all weight vectors is computed. The neuron whose weight vector is most similar to the input is called the best matching unit (BMU). The weights of the BMU and ...

  8. Semantic network - Wikipedia

    en.wikipedia.org/wiki/Semantic_network

    A semantic network may be instantiated as, for example, a graph database or a concept map. Typical standardized semantic networks are expressed as semantic triples. Semantic networks are used in neurolinguistics and natural language processing applications such as semantic parsing [2] and word-sense disambiguation. [3]

  9. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Example: In marketing, k-means clustering is frequently employed for market segmentation, where customers with similar characteristics or behaviors are grouped together. For instance, a retail company may use k -means clustering to segment its customer base into distinct groups based on factors such as purchasing behavior, demographics, and ...