enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    A recursive tree is a labeled rooted tree where the vertex labels respect the tree order (i.e., if u < v for two vertices u and v, then the label of u is smaller than the label of v). In a rooted tree, the parent of a vertex v is the vertex connected to v on the path to the root; every vertex has a unique parent, except the root has no parent. [24]

  3. Strongly connected component - Wikipedia

    en.wikipedia.org/wiki/Strongly_connected_component

    The two queries partition the vertex set into 4 subsets: vertices reached by both, either one, or none of the searches. One can show that a strongly connected component has to be contained in one of the subsets. The vertex subset reached by both searches forms a strongly connected component, and the algorithm then recurses on the other 3 subsets.

  4. Link/cut tree - Wikipedia

    en.wikipedia.org/wiki/Link/cut_tree

    A link/cut tree is a data structure for representing a forest, a set of rooted trees, and offers the following operations: Add a tree consisting of a single node to the forest. Given a node in one of the trees, disconnect it (and its subtree) from the tree of which it is part. Attach a node to another node as its child.

  5. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    Trees are commonly used to represent or manipulate hierarchical data in applications such as: . File systems for: . Directory structure used to organize subdirectories and files (symbolic links create non-tree graphs, as do multiple hard links to the same file or directory)

  6. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    Any vertex that is not on a directed cycle forms a strongly connected component all by itself: for example, a vertex whose in-degree or out-degree is 0, or any vertex of an acyclic graph. The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on ...

  7. Biconnected component - Wikipedia

    en.wikipedia.org/wiki/Biconnected_component

    A cutpoint, cut vertex, or articulation point of a graph G is a vertex that is shared by two or more blocks. The structure of the blocks and cutpoints of a connected graph can be described by a tree called the block-cut tree or BC-tree. This tree has a vertex for each block and for each articulation point of the given graph.

  8. Vertex separator - Wikipedia

    en.wikipedia.org/wiki/Vertex_separator

    On the left a centered tree, on the right a bicentered one. The numbers show each node's eccentricity. To give another class of examples, every free tree T has a separator S consisting of a single vertex, the removal of which partitions T into two or more connected components, each of size at most n ⁄ 2.

  9. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.