Search results
Results from the WOW.Com Content Network
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d (or any one side) approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
If the sizes of an inscribed and a circumscribed circle are fixed, the right kite has the largest area of any quadrilateral trapped between them. [ 19 ] Among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter (maximum distance between any two points) is an equidiagonal kite with angles 60°, 75°, 150 ...
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...
A set of sides that can form a cyclic quadrilateral can be arranged in any of three distinct sequences each of which can form a cyclic quadrilateral of the same area in the same circumcircle (the areas being the same according to Brahmagupta's area formula). Any two of these cyclic quadrilaterals have one diagonal length in common. [17]: p. 84
To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord. Proposition 1 of the work states that a line from the third ...
If k, l are the tangency chords and m, n are the bimedians of the quadrilateral, then the area can be calculated using the formula [9] = | | This formula cannot be used if the quadrilateral is a right kite, since the denominator is zero in that case.