enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    A sample of thorium. The thorium fuel cycle is a nuclear fuel ... "Review of the Radkowsky Thorium reactor concept ... Fact sheet on thorium Archived 2013-02-16 at ...

  3. Thorium-based nuclear power - Wikipedia

    en.wikipedia.org/wiki/Thorium-based_nuclear_power

    A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...

  4. Nuclear fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fuel_cycle

    The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end , which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end , which are necessary to safely ...

  5. Molten-salt reactor - Wikipedia

    en.wikipedia.org/wiki/Molten-salt_reactor

    Kirk Sorensen, former NASA scientist and chief nuclear technologist at Teledyne Brown Engineering, is a long-time promoter of the thorium fuel cycle, coining the term liquid fluoride thorium reactor. In 2011, Sorensen founded Flibe Energy, [ 38 ] a company aimed at developing 20–50 MW LFTR reactor designs to power military bases.

  6. Thorium Energy Alliance - Wikipedia

    en.wikipedia.org/wiki/Thorium_Energy_Alliance

    Thorium is not fissile in itself, absorbs a neutron to transmute into uranium-233, which can fission to produce energy. Therefore, a thorium based fuel cycle produces very little, easily manageable waste compared to uranium. [20] Thorium based fuel cycle options can be used to 'burn' all the presently accumulated nuclear waste.

  7. Breeder reactor - Wikipedia

    en.wikipedia.org/wiki/Breeder_reactor

    In the thorium cycle, thorium-232 breeds by converting first to protactinium-233, which then decays to uranium-233. If the protactinium remains in the reactor, small amounts of uranium-232 are also produced, which has the strong gamma emitter thallium-208 in its decay chain. Similar to uranium-fueled designs, the longer the fuel and fertile ...

  8. Advanced heavy-water reactor - Wikipedia

    en.wikipedia.org/wiki/Advanced_heavy-water_reactor

    The advanced heavy-water reactor (AHWR) or AHWR-300 is the latest Indian design for a next-generation nuclear reactor that burns thorium in its fuel core. It is slated to form the third stage in India's three-stage fuel-cycle plan. [1] This phase of the fuel cycle plan was supposed to be built starting with a 300 MWe prototype in 2016. [2]

  9. Isotopes of protactinium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_protactinium

    Protactinium-233 is also part of the thorium fuel cycle. It is an intermediate beta decay product between thorium-233 (produced from natural thorium-232 by neutron capture) and uranium-233 (the fissile fuel of the thorium cycle). Some thorium-cycle reactor designs try to protect Pa-233 from further neutron capture producing Pa-234 and U-234 ...