Search results
Results from the WOW.Com Content Network
Transition temperatures for the constituent elements have dashes ----- in the first column in a blank row, such as at 922 K, the melting point of Mg. Transition temperatures for the substance have two blank rows with dashes, and a center row with the defined transition and the enthalpy change, such as the melting point of MgCl 2 at 980 K. The ...
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
{{Periodic table (melting point)|state=expanded}} or {{Periodic table (melting point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for T c and P c is indicated by the number of digits.
the heat at which water boils vehemently (the temperature at which water begins to boil is given as an additional value in the description, as 33) 40: melting point of an alloy of one part lead, four parts tin and five parts bismuth 48: 3: melting point of an alloy of equal parts of bismuth and tin 57: 3 + 1 ⁄ 4
Triple points mark conditions at which three different phases can coexist. For example, the water phase diagram has a triple point corresponding to the single temperature and pressure at which solid, liquid, and gaseous water can coexist in a stable equilibrium (273.16 K and a partial vapor pressure of 611.657 Pa).
The Joback method, often named Joback–Reid method, predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only. It is named after Kevin G. Joback in 1984 [1] and developed it further with Robert C. Reid. [2] The Joback method is an extension of the Lydersen method [3] and uses very similar groups, formulas, and parameters for the three ...