Search results
Results from the WOW.Com Content Network
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR gate. [1] It is equivalent to the logical connective ( ↔ {\displaystyle \leftrightarrow } ) from mathematical logic , also known as the material biconditional.
This explains why "EQ" is often called "XNOR" in the combinational logic of circuit engineers, since it is the negation of the XOR operation; "NXOR" is a less commonly used alternative. [1] Another rationalization of the admittedly circuitous name "XNOR" is that one begins with the "both false" operator NOR and then adds the eXception "or both ...
Apple has acquired Xnor.ai, a Seattle startup specializing in low-power, edge-based artificial intelligence tools, sources with knowledge of the deal told GeekWire. The acquisition echoes Apple's ...
An XNOR gate is a basic comparator, because its output is "1" only if its two input bits are equal. The analog equivalent of digital comparator is the voltage comparator . Many microcontrollers have analog comparators on some of their inputs that can be read or trigger an interrupt .
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
The gate is called XNOR because it is a NOR gate with an added twist. With NOR, if either or both inputs is 1, the output is 0. With XNOR, the "exclusive" condition is added to that, so that with XNOR, the output is 0 only if exactly one input is 1. With XNOR, the "both inputs 1" condition is excluded from producing the active output, namely 0.
In logic, a functionally complete set of logical connectives or Boolean operators is one that can be used to express all possible truth tables by combining members of the set into a Boolean expression.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.