Search results
Results from the WOW.Com Content Network
Certain number-theoretic methods exist for testing whether a number is prime, such as the Lucas test and Proth's test. These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is ...
Libgcrypt uses a similar process with base 2 for the Fermat test, but OpenSSL does not. In practice with most big number libraries such as GMP, the Fermat test is not noticeably faster than a Miller–Rabin test, and can be slower for many inputs. [4] As an exception, OpenPFGW uses only the Fermat test for probable prime testing.
In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.
Input #1: b, the number of bits of the result Input #2: k, the number of rounds of testing to perform Output: a strong probable prime n while True: pick a random odd integer n in the range [2 b −1 , 2 b −1] if the Miller–Rabin test with inputs n and k returns “ probably prime ” then return n
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
An Euler probable prime to base a is an integer that is indicated prime by the somewhat stronger theorem that for any prime p, a (p−1)/2 equals () modulo p, where () is the Jacobi symbol. An Euler probable prime which is composite is called an Euler–Jacobi pseudoprime to base a. The smallest Euler-Jacobi pseudoprime to base 2 is 561.
The table below lists the largest currently known prime numbers and probable primes (PRPs) as tracked by the PrimePages and by Henri & Renaud Lifchitz's PRP Records. Numbers with more than 2,000,000 digits are shown.