Search results
Results from the WOW.Com Content Network
Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.
[10] [11] vector<bool> does not meet the requirements for a C++ Standard Library container. For instance, a container<T>::reference must be a true lvalue of type T. This is not the case with vector<bool>::reference, which is a proxy class convertible to bool. [12] Similarly, the vector<bool>::iterator does not yield a bool& when dereferenced.
A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5. A common example of a vector-valued function is one that depends on a single real parameter t, often representing time, producing a vector v(t) as the result.
Initialization is done either by statically embedding the value at compile time, or else by assignment at run time. A section of code that performs such initialization is generally known as "initialization code" and may include other, one-time-only, functions such as opening files; in object-oriented programming , initialization code may be ...
Here, c[i:i+3] represents the four array elements from c[i] to c[i+3] and the vector processor can perform four operations for a single vector instruction. Since the four vector operations complete in roughly the same time as one scalar instruction, the vector approach can run up to four times faster than the original code.
The lazy initialization technique allows us to do this in just O(m) operations, rather than spending O(m+n) operations to first initialize all array cells. The technique is simply to allocate a table V storing the pairs ( k i , v i ) in some arbitrary order, and to write for each i in the cell T [ k i ] the position in V where key k i is stored ...
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.
If (,,) is one of the elements of the equivalence class then these are taken to be homogeneous coordinates of . Lines in this space are defined to be sets of solutions of equations of the form a x + b y + c z = 0 {\displaystyle ax+by+cz=0} where not all of a {\displaystyle a} , b {\displaystyle b} and c {\displaystyle c} are zero.