Search results
Results from the WOW.Com Content Network
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
The concept of a continuous medium allows for intuitive analysis of bulk matter by using differential equations that describe the behavior of such matter according to physical laws, such as mass conservation, momentum conservation, and energy conservation. Information about the specific material is expressed in constitutive relationships.
Flow is 2D: u 3 = ∂u 1 / ∂x 3 = ∂u 2 / ∂x 3 = 0; The first two scale factors of the coordinate system are independent of the last coordinate: ∂h 1 / ∂x 3 = ∂h 2 / ∂x 3 = 0, otherwise extra terms appear. The stream function has some useful properties:
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.
The constitutive relation is expressed as a linear first-order differential equation: = + ˙ This model represents a solid undergoing reversible, viscoelastic strain. Upon application of a constant stress, the material deforms at a decreasing rate, asymptotically approaching the steady-state strain.
The Newton's constitutive law for a compressible flow results from the following assumptions on the Cauchy stress tensor: [5] the stress is Galilean invariant : it does not depend directly on the flow velocity, but only on spatial derivatives of the flow velocity.
Mass transfer in a system is governed by Fick's first law: 'Diffusion flux from higher concentration to lower concentration is proportional to the gradient of the concentration of the substance and the diffusivity of the substance in the medium.' Mass transfer can take place due to different driving forces. Some of them are: [12]
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.