enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum dot - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot

    The SAM is positioned between ZnO–PbS colloidal quantum dot (CQD) film junction to modify band alignment via the dipole moment of the constituent SAM molecule, and the band tuning may be modified via the density, dipole and the orientation of the SAM molecule.

  3. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    These diagrams help to explain the operation of many kinds of semiconductor devices and to visualize how bands change with position (band bending). The bands may be coloured to distinguish level filling. A band diagram should not be confused with a band structure plot. In both a band diagram and a band structure plot, the vertical axis ...

  4. Core–shell semiconductor nanocrystal - Wikipedia

    en.wikipedia.org/wiki/Core–shell_semiconductor...

    Colloidal semiconductor nanocrystals, which are also called quantum dots (QDs), consist of ~1–10 nm diameter semiconductor nanoparticles that have organic ligands bound to their surface. These nanomaterials have found applications in nanoscale photonic, photovoltaic, and light-emitting diode (LED) devices due to their size-dependent optical ...

  5. Edge states - Wikipedia

    en.wikipedia.org/wiki/Edge_states

    Based on the energy eigenvalues, conduction band are the high energy states (E>0) while valence bands are the low energy states (E<0). In some materials, for example, in graphene and zigzag graphene quantum dot, there exists the energy states having energy eigenvalues exactly equal to zero (E=0) besides the conduction and valence bands. These ...

  6. Hydrogel encapsulation of quantum dots - Wikipedia

    en.wikipedia.org/wiki/Hydrogel_encapsulation_of...

    Quantum dots (QDs) are nano-scale semiconductor particles on the order of 2–10 nm in diameter. They possess electrical properties between those of bulk semi-conductors and individual molecules, as well as optical characteristics that make them suitable for applications where fluorescence is desirable, such as medical imaging.

  7. Light-emitting diode physics - Wikipedia

    en.wikipedia.org/wiki/Light-emitting_diode_physics

    A layer of quantum dots is sandwiched between layers of electron-transporting and hole-transporting materials. An applied electric field causes electrons and holes to move into the quantum dot layer and recombine forming an exciton that excites a QD. This scheme is commonly studied for quantum dot display. The tunability of emission wavelengths ...

  8. Silicon quantum dot - Wikipedia

    en.wikipedia.org/wiki/Silicon_quantum_dot

    Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their indirect band gap , including long-lived luminescent excited-states and large Stokes shifts .

  9. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.