Search results
Results from the WOW.Com Content Network
Determinants can also be defined by some of their properties. Namely, the determinant is the unique function defined on the n × n matrices that has the four following properties: The determinant of the identity matrix is 1. The exchange of two rows multiplies the determinant by −1.
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.
The determinant of a square matrix is an important property. The determinant indicates if a matrix is invertible (i.e. the inverse of a matrix exists when the determinant is nonzero). Determinants are used for finding eigenvalues of matrices (see below), and for solving a system of linear equations (see Cramer's rule ).
Any property of matrices that is preserved under matrix products and inverses can be used to define further matrix groups. For example, matrices with a given size and with a determinant of 1 form a subgroup of (that is, a smaller group contained in) their general linear group, called a special linear group. [67]
Identifying with , the normal "real" Hessian is a matrix. As the object of study in several complex variables are holomorphic functions , that is, solutions to the n-dimensional Cauchy–Riemann conditions , we usually look on the part of the Hessian that contains information invariant under holomorphic changes of coordinates.
The proof for Cramer's rule uses the following properties of the determinants: linearity with respect to any given column and the fact that the determinant is zero whenever two columns are equal, which is implied by the property that the sign of the determinant flips if you switch two columns.
If A is a real m×n matrix, then det(A A T) is equal to the square of the m-dimensional volume of the parallelotope spanned in R n by the m rows of A. Binet's formula states that this is equal to the sum of the squares of the volumes that arise if the parallelepiped is orthogonally projected onto the m -dimensional coordinate planes (of which ...
Instead, the determinant can be evaluated in () operations by forming the LU decomposition = (typically via Gaussian elimination or similar methods), in which case = and the determinants of the triangular matrices and are simply the products of their diagonal entries. (In practical applications of numerical linear algebra, however, explicit ...