Search results
Results from the WOW.Com Content Network
Often, it is difficult or impossible to solve explicitly for y, and implicit differentiation is the only feasible method of differentiation. An example is the equation =. It is impossible to algebraically express y explicitly as a function of x, and therefore one cannot find dy / dx by explicit differentiation. Using the implicit method ...
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
The primary objects of study in differential calculus are the derivative of a function, related notions such as the differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation.
Differentiation with respect to time or one of the other variables requires application of the chain rule, [1] since most problems involve several variables. Fundamentally, if a function F {\displaystyle F} is defined such that F = f ( x ) {\displaystyle F=f(x)} , then the derivative of the function F {\displaystyle F} can be taken with respect ...
Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a function and a point in the domain, the derivative at that point is a way of encoding the small-scale behavior of the function near that point.
The linear operator which assigns to each function its derivative is an example of a differential operator on a function space. By means of the Fourier transform, pseudo-differential operators can be defined which allow for fractional calculus. Some of these operators are so important that they have their own names:
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.