enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by (), while the number of ways to write = + + + where every a i is a nonnegative integer is ...

  3. Egorychev method - Wikipedia

    en.wikipedia.org/wiki/Egorychev_method

    The Egorychev method is a collection of techniques introduced by Georgy Egorychev for finding identities among sums of binomial coefficients, Stirling numbers, Bernoulli numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers. The method relies on two observations.

  4. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).

  5. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    Hence the problem reduces to finding the binomial coefficient (). Also shown are the three corresponding 3-compositions of 4. The three-choose-two combination yields two results, depending on whether a bin is allowed to have zero items. In both results the number of bins is 3.

  6. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    Suppose one wishes to calculate Pr(X ≤ 8) for a binomial random variable X. If Y has a distribution given by the normal approximation, then Pr( X ≤ 8) is approximated by Pr( Y ≤ 8.5) . The addition of 0.5 is the continuity correction; the uncorrected normal approximation gives considerably less accurate results.

  7. Pascal's rule - Wikipedia

    en.wikipedia.org/wiki/Pascal's_rule

    In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.

  8. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).

  9. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    The central binomial coefficients give the number of possible number of assignments of n-a-side sports teams from 2n players, taking into account the playing area side. The central binomial coefficient () is the number of arrangements where there are an equal number of two types of objects.