enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.

  3. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  4. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    As an example of another thermodynamic potential, the Helmholtz free energy is written: (,, {}) = where temperature has replaced entropy as a natural variable. In order to understand the value of the thermodynamic potentials, it is necessary to view them in a different light.

  5. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The energy and entropy of unpolarized blackbody thermal radiation, is calculated using the spectral energy and entropy radiance expressions derived by Max Planck [63] using equilibrium statistical mechanics, = ⁡ (), = ((+) ⁡ (+) ⁡ ()) where c is the speed of light, k is the Boltzmann constant, h is the Planck constant, ν is frequency ...

  6. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    For example, in the Carnot cycle, while the heat flow from a hot reservoir to a cold reservoir represents the increase in the entropy in a cold reservoir, the work output, if reversibly and perfectly stored, represents the decrease in the entropy which could be used to operate the heat engine in reverse, returning to the initial state; thus the ...

  7. Rubber band experiment - Wikipedia

    en.wikipedia.org/wiki/Rubber_band_experiment

    The T-V diagram of the rubber band experiment. The decrease in the temperature of the rubber band in a spontaneous process at ambient temperature can be explained using the Helmholtz free energy = where dF is the change in free energy, dL is the change in length, τ is the tension, dT is the change in temperature and S is the entropy.

  8. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  9. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    Ludwig Boltzmann defined entropy as a measure of the number of possible microscopic states (microstates) of a system in thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties, which constitute the macrostate of the system. A useful illustration is the example of a sample of gas contained in a container.