Search results
Results from the WOW.Com Content Network
Proof without words of the AM–GM inequality: PR is the diameter of a circle centered on O; its radius AO is the arithmetic mean of a and b. Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. Visual proof that (x + y) 2 ≥ 4xy. Taking square roots and dividing by two gives the AM ...
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
1.1 First proof: AM-HM inequality. 1.2 Second proof: Rearrangement. 1.3 Third proof: Sum of Squares. 1.4 Fourth proof: Cauchy–Schwarz. ... Fifth proof: AM-GM
Another application of this theorem provides a geometrical proof of the AM–GM inequality in the case of two numbers. For the numbers p and q one constructs a half circle with diameter p + q. Now the altitude represents the geometric mean and the radius the arithmetic mean of the two numbers.
Proof without words of the AM–GM inequality: PR is the diameter of a circle centered on O; its radius AO is the arithmetic mean of a and b. Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ.
The proof follows from Jensen's inequality, making use of the fact the logarithm is concave: = = = =. By applying the exponential function to both sides and observing that as a strictly increasing function it preserves the sign of the inequality, we get ∏ i = 1 n x i w i ≤ ∑ i = 1 n w i x i . {\displaystyle \prod _{i=1}^{n}x ...
AM GM inequality visual proof: Image title: Proof without words of the inequality of arithmetic and geometric means, drawn by CMG Lee. PR is a diameter of a circle centred on O; its radius AO is the arithmetic mean of a and b.
The proof follows from the arithmetic–geometric mean inequality, , and reciprocal duality (and are also reciprocal dual to each other). The study of the Pythagorean means is closely related to the study of majorization and Schur-convex functions. The harmonic and geometric means are concave symmetric functions of their arguments, and hence ...