Search results
Results from the WOW.Com Content Network
The Mozingo reduction, also known as Mozingo reaction or thioketal reduction, is a chemical reaction capable of fully reducing a ketone or aldehyde to the corresponding alkane via a dithioacetal. [1] [2] The reaction scheme is as follows: [3]
Due to the strongly alkaline reaction conditions, aldehydes that have alpha hydrogen atom(s) instead undergo deprotonation there, leading to enolates and possible aldol reactions. Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [ 5 ]
The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH) 2) by reaction with water. Thus, the oxidation of a primary alcohol at the aldehyde level without further oxidation to the carboxylic acid is possible by performing the reaction ...
Usually, the crossed product is the major one. Any traces of the self-aldol product from the aldehyde may be disallowed by first preparing a mixture of a suitable base and the ketone and then adding the aldehyde slowly to the said reaction mixture. Using too concentrated base could lead to a competing Cannizzaro reaction. [12]
The Dakin oxidation. The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate.
Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H. Two broad strategies exist for carbonyl reduction. One method, which is favored in industry, uses hydrogen as the reductant.
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
Clemmensen reduction is a chemical reaction described as a reduction of ketones or aldehydes to alkanes using zinc amalgam and concentrated hydrochloric acid (HCl). [1] [2] This reaction is named after Erik Christian Clemmensen, a Danish-American chemist.