Search results
Results from the WOW.Com Content Network
If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
[1] [2] For a parallelogram, the Newton line does not exist since both midpoints of the diagonals coincide with point of intersection of the diagonals. Moreover, the area identity of the theorem holds in this case for any inner point of the quadrilateral.
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...
E, K, F lie on a common line, the Newton line Not to be confused with Newton-Gauss line or Isaac Newton line . In Euclidean geometry the Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral with at most two parallel sides.
It is a well-known theorem that the three midpoints of the diagonals of a complete quadrilateral are collinear. [2] There are several proofs of the result based on areas [ 2 ] or wedge products [ 3 ] or, as the following proof, on Menelaus's theorem , due to Hillyer and published in 1920.
There can also be defined a quasinine-point center E as the intersection of the lines E a E c and E b E d, where E a, E b, E c, E d are the nine-point centers of triangles BCD, ACD, ABD, ABC respectively. Then E is the midpoint of OH. [47]