Search results
Results from the WOW.Com Content Network
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
It is therefore the maximum value for variables declared as integers (e.g., as int) in many programming languages. The data type time_t, used on operating systems such as Unix, is a signed integer counting the number of seconds since the start of the Unix epoch (midnight UTC of 1 January 1970), and is often implemented as a 32-bit integer. [8]
Additionally, POSIX includes ssize_t, which is a signed integer type of the same width as size_t. ptrdiff_t is a signed integer type used to represent the difference between pointers. It is guaranteed to be valid only against pointers of the same type; subtraction of pointers consisting of different types is implementation-defined.
In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.
As the majority of modern computers are 32-bit or 64-bit, and a large number of programs are still written in 32-bit compatibility mode, this means that many programs using Unix time are using signed 32-bit integer fields. The maximum value of a signed 32-bit integer is 2 31 − 1, and the minimum value is −2 31, making it impossible to ...
[a] Thus, a signed 32-bit integer can only represent integer values from −(2 31) to 2 31 − 1 inclusive. Consequently, if a signed 32-bit integer is used to store Unix time, the latest time that can be stored is 2 31 − 1 (2,147,483,647) seconds after epoch, which is 03:14:07 on Tuesday, 19 January 2038. [7]
A 32-bit register can store 2 32 different values. The range of integer values that can be stored in 32 bits depends on the integer representation used. With the two most common representations, the range is 0 through 4,294,967,295 (2 32 − 1) for representation as an binary number, and −2,147,483,648 (−2 31) through 2,147,483,647 (2 31 − 1) for representation as two's complement.
In the Windows API, the datatype SHORT is defined as a 16-bit signed integer on all machines. [7] ... Windows, 16/32/64-bit systems [7] long: 4 (minimum requirement 4)