Search results
Results from the WOW.Com Content Network
Since the density of dry air at 101.325 kPa at 20 °C is [10] 0.001205 g/cm 3 and that of water is 0.998203 g/cm 3 we see that the difference between true and apparent relative densities for a substance with relative density (20 °C/20 °C) of about 1.100 would be 0.000120. Where the relative density of the sample is close to that of water (for ...
The increased density of the seawater beneath the forming ice causes it to sink towards the bottom. On a large scale, the process of brine rejection and sinking cold salty water results in ocean currents forming to transport such water away from the Poles, leading to a global system of currents called the thermohaline circulation.
The official density of water at 60 °F according to the 2008 edition of ASTM D1250 is 999.016 kg/m 3. [2] The 1980 value is 999.012 kg/m 3 . [ 3 ] In some cases the standard conditions may be 15 °C (59 °F) and not 60 °F (15.56 °C), in which case a different value for the water density would be appropriate ( see standard conditions for ...
To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the density of the material to that of a standard material, usually water. Thus a relative density less than one relative to water means that the substance ...
In technical terms, the dew point is the temperature at which the water vapor in a sample of air at constant barometric pressure condenses into liquid water at the same rate at which it evaporates. [7] At temperatures below the dew point, the rate of condensation will be greater than that of evaporation, forming more liquid water.
Example 1: If a block of solid stone weighs 3 kilograms on dry land and 2 kilogram when immersed in a tub of water, then it has displaced 1 kilogram of water. Since 1 liter of water weighs 1 kilogram (at 4 °C), it follows that the volume of the block is 1 liter and the density (mass/volume) of the stone is 3 kilograms/liter.
The hydrometer sinks deeper in low-density liquids such as kerosene, gasoline, and alcohol, and less deep in high-density liquids such as brine, milk, and acids. It is usual for hydrometers to be used with dense liquids to have the mark 1.000 (for water) near the top of the stem, and those for use with lighter liquids to have 1.000 near the bottom.
The density of a material is defined as mass divided by volume, typically expressed in units of kg/m 3.Unlike density, specific weight is not a fixed property of a material, as it depends on the value of the gravitational acceleration, which varies with location (e.g., Earth's gravity).