Search results
Results from the WOW.Com Content Network
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
[10] [11] vector<bool> does not meet the requirements for a C++ Standard Library container. For instance, a container<T>::reference must be a true lvalue of type T. This is not the case with vector<bool>::reference, which is a proxy class convertible to bool. [12] Similarly, the vector<bool>::iterator does not yield a bool& when dereferenced.
The loop calls the Iterator::next method on the iterator before executing the loop body. If Iterator::next returns Some(_), the value inside is assigned to the pattern and the loop body is executed; if it returns None, the loop is terminated.
Iterators however can be used and defined explicitly. For any iterable sequence type or class, the built-in function iter() is used to create an iterator object. The iterator object can then be iterated with the next() function, which uses the __next__() method internally, which returns the next element in the container. (The previous statement ...
The cross product operation is an example of a vector rank function because it operates on vectors, not scalars. Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing ...
The following are notable software design patterns for OOP objects. [59] Function object: with a single method (in C++, the function operator, operator()) it acts much like a function; Immutable object: does not change state after creation; First-class object: can be used without restriction; Container object: contains other objects
An object's virtual method table will contain the addresses of the object's dynamically bound methods. Method calls are performed by fetching the method's address from the object's virtual method table. The virtual method table is the same for all objects belonging to the same class, and is therefore typically shared between them.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...