Search results
Results from the WOW.Com Content Network
java.util.Collection class and interface hierarchy Java's java.util.Map class and interface hierarchy. The Java collections framework is a set of classes and interfaces that implement commonly reusable collection data structures. [1] Although referred to as a framework, it works in a manner of a library. The collections framework provides both ...
For unordered access as defined in the java.util.Map interface, the java.util.concurrent.ConcurrentHashMap implements java.util.concurrent.ConcurrentMap. [2] The mechanism is a hash access to a hash table with lists of entries, each entry holding a key, a value, the hash, and a next reference.
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
To create a treemap, one must define a tiling algorithm, that is, a way to divide a region into sub-regions of specified areas. Ideally, a treemap algorithm would create regions that satisfy the following criteria: A small aspect ratio—ideally close to one. Regions with a small aspect ratio (i.e., fat objects) are easier to perceive. [2]
(string):len() #string: Lua: string size: Smalltalk: LEN(string) LEN_TRIM(string) Fortran: StringLength[string] Mathematica «FUNCTION» LENGTH(string) or «FUNCTION» BYTE-LENGTH(string) number of characters and number of bytes, respectively COBOL: string length string: a decimal string giving the number of characters Tcl: ≢ string: APL ...
Adding n items is an O(n log n) process, making tree sorting a 'fast sort' process. Adding an item to an unbalanced binary tree requires O(n) time in the worst-case: When the tree resembles a linked list (degenerate tree). This results in a worst case of O(n²) time for this sorting algorithm. This worst case occurs when the algorithm operates ...
Bucket sort can be seen as a generalization of counting sort; in fact, if each bucket has size 1 then bucket sort degenerates to counting sort. The variable bucket size of bucket sort allows it to use O(n) memory instead of O(M) memory, where M is the number of distinct values; in exchange, it gives up counting sort's O(n + M) worst-case behavior.
For example, when testing if the given interval [40 ,60) overlaps the intervals in the tree shown above, we see that it does not overlap the interval [20, 36) in the root, but since the root's low value (20) is less than the sought high value (60), we must search the right subtree. The left subtree's maximum high of 41 exceeds the sought low ...