Search results
Results from the WOW.Com Content Network
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.
In geometry, the midpoint polygon of a polygon P is the polygon whose vertices are the midpoints of the edges of P. [1] [2] It is sometimes called the Kasner polygon after Edward Kasner, who termed it the inscribed polygon "for brevity". [3] [4] The medial triangle The Varignon parallelogram
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
Given such a configuration the point P is located on the Newton line, that is line EF connecting the midpoints of the diagonals. [1] A tangential quadrilateral with two pairs of parallel sides is a rhombus. In this case, both midpoints and the center of the incircle coincide, and by definition, no Newton line exists.
In geometry, the Newton–Gauss line (or Gauss–Newton line) is the line joining the midpoints of the three diagonals of a complete quadrilateral.. The midpoints of the two diagonals of a convex quadrilateral with at most two parallel sides are distinct and thus determine a line, the Newton line.
There can also be defined a quasinine-point center E as the intersection of the lines E a E c and E b E d, where E a, E b, E c, E d are the nine-point centers of triangles BCD, ACD, ABD, ABC respectively. Then E is the midpoint of OH. [47]
E, K, F lie on a common line, the Newton line Not to be confused with Newton-Gauss line or Isaac Newton line . In Euclidean geometry the Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral with at most two parallel sides.