Search results
Results from the WOW.Com Content Network
A regular expression (shortened as regex or regexp), [1] sometimes referred to as rational expression, [2] [3] is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings , or for input validation .
Perl Compatible Regular Expressions (PCRE) is a library written in C, which implements a regular expression engine, inspired by the capabilities of the Perl programming language. Philip Hazel started writing PCRE in summer 1997. [ 3 ]
List of regular expression libraries Name Official website Programming language Software license Used by Boost.Regex [Note 1] Boost C++ Libraries: C++: Boost: Notepad++ >= 6.0.0, EmEditor: Boost.Xpressive Boost C++ Libraries: C++ Boost DEELX RegExLab: C++ Proprietary FREJ [Note 2] Fuzzy Regular Expressions for Java: Java: LGPL GLib/GRegex [Note ...
Greed, in regular expression context, describes the number of characters which will be matched (often also stated as "consumed") by a variable length portion of a regular expression – a token or group followed by a quantifier, which specifies a number (or range of numbers) of tokens. If the portion of the regular expression is "greedy", it ...
For a full list of editing commands, see Help:Wikitext For including parser functions, variables and behavior switches, see Help:Magic words For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula
RE2 is a software library which implements a regular expression engine. It uses finite-state machines, in contrast to most other regular expression libraries. RE2 supports a C++ interface. RE2 was implemented by Google and Google uses RE2 for Google products. [3]
To decide whether two given regular expressions describe the same language, each can be converted into an equivalent minimal deterministic finite automaton via Thompson's construction, powerset construction, and DFA minimization. If, and only if, the resulting automata agree up to renaming of states, the regular expressions' languages agree.
ij is at most 1 / 3 (4 k+1 (6s+7) - 4) symbols, where s denotes the number of characters in Σ. Therefore, the length of the regular expression representing the language accepted by M is at most 1 / 3 (4 n+1 (6s+7)f - f - 3) symbols, where f denotes the number of final states. This exponential blowup is inevitable, because there ...