Search results
Results from the WOW.Com Content Network
In the case of undirected graphs, only O(n) time is required to find a cycle in an n-vertex graph, since at most n − 1 edges can be tree edges. Many topological sorting algorithms will detect cycles too, since those are obstacles for topological order to exist.
In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values. For any function f that maps a finite set S to itself, and any initial value x 0 in S , the sequence of iterated function values
An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4] The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree.
If the graph is connected, it finds a minimum spanning tree. It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2] The key steps of the algorithm are sorting and the use of a disjoint-set data structure to detect cycles. Its running time is dominated by the time to sort all of the ...
In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a ...
A Hamiltonian cycle around a network of six vertices Examples of Hamiltonian cycles on a square grid graph 8x8. In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once.
A disjoint cycle cover of an undirected graph (if it exists) can be found in polynomial time by transforming the problem into a problem of finding a perfect matching in a larger graph. [1] [2] If the cycles of the cover have no edges in common, the cover is called edge-disjoint or simply disjoint cycle cover.
If a graph contains a "negative cycle" (i.e. a cycle whose edges sum to a negative value) that is reachable from the source, then there is no cheapest path: any path that has a point on the negative cycle can be made cheaper by one more walk around the negative cycle. In such a case, the Bellman–Ford algorithm can detect and report the ...