enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction...

    Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.

  3. Constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction

    Other considered kinds of constraints are on real or rational numbers; solving problems on these constraints is done via variable elimination or the simplex algorithm. Constraint satisfaction as a general problem originated in the field of artificial intelligence in the 1970s (see for example (Laurière 1978)).

  4. Scenario optimization - Wikipedia

    en.wikipedia.org/wiki/Scenario_optimization

    First constraints are sampled and then the user starts removing some of the constraints in succession. This can be done in different ways, even according to greedy algorithms. After elimination of one more constraint, the optimal solution is updated, and the corresponding optimal value is determined.

  5. Complexity of constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Complexity_of_constraint...

    An example of a tractable class defined in terms of a structural restriction is that of binary acyclic problems. Given a constraint satisfaction problem with only binary constraints, its associated graph has a vertex for every variable and an edge for every constraint; two vertices are joined if they are in a constraint. If the graph of a ...

  6. Nurse scheduling problem - Wikipedia

    en.wikipedia.org/wiki/Nurse_scheduling_problem

    The nurse scheduling problem (NSP), also called the nurse rostering problem (NRP), is the operations research problem of finding an optimal way to assign nurses to shifts, typically with a set of hard constraints which all valid solutions must follow, and a set of soft constraints which define the relative quality of valid solutions. [1]

  7. Optimality model - Wikipedia

    en.wikipedia.org/wiki/Optimality_model

    Three primary variables are used in optimality models of behavior: decisions, currency, and constraints. [2] Decision involves evolutionary considerations of the costs and benefits of their actions. Currency is defined as the variable that is intended to be maximized (ex. food per unit of energy expenditure).

  8. AC-3 algorithm - Wikipedia

    en.wikipedia.org/wiki/AC-3_algorithm

    AC-3 operates on constraints, variables, and the variables' domains (scopes). A variable can take any of several discrete values; the set of values for a particular variable is known as its domain. A constraint is a relation that limits or constrains the values a variable may have. The constraint may involve the values of other variables.

  9. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    Alternatively, if the constraints are all equality constraints and are all linear, they can be solved for some of the variables in terms of the others, and the former can be substituted out of the objective function, leaving an unconstrained problem in a smaller number of variables.