Search results
Results from the WOW.Com Content Network
The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to calculus.
The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2] It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the ...
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.
A special type of area density is called column density (also columnar mass density or simply column density), denoted ρ A or σ. It is the mass of substance per unit area integrated along a path; [ 1 ] It is obtained integrating volumetric density ρ {\displaystyle \rho } over a column: [ 2 ] σ = ∫ ρ d s . {\displaystyle \sigma =\int \rho ...
The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(A T) and C(A) respectively. [2] This article considers matrices of real numbers
In an -dimensional space a Gaussian function can be defined as = (), where = [] is a column of coordinates, is a positive-definite matrix, and denotes matrix transposition. The integral of this Gaussian function over the whole n {\displaystyle n} -dimensional space is given as ∫ R n exp ( − x T C x ) d x = π n det C ...
Spaces within a formula must be directly managed (for example by including explicit hair or thin spaces). Variable names must be italicized explicitly, and superscripts and subscripts must use an explicit tag or template. Except for short formulas, the source of a formula typically has more markup overhead and can be difficult to read.
The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space. In the simplest possible case the relationship is that of a tensor product , but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.