Search results
Results from the WOW.Com Content Network
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.
Since the sum F(k,m) of k consecutive squares beginning ... There can also exist n − 1 positive integers whose n th powers sum to an ... (7, 15, 20) with area 42 (6 ...
For a positive integer n, p(n) is the number of distinct ways of representing n as a sum of positive integers. For the purposes of this definition, the order of the terms in the sum is irrelevant: two sums with the same terms in a different order are not considered to be distinct.
Each positive integer n has 2 n−1 distinct compositions. Bijection between 3 bit binary numbers and compositions of 4 A weak composition of an integer n is similar to a composition of n , but allowing terms of the sequence to be zero: it is a way of writing n as the sum of a sequence of non-negative integers .
The ErdÅ‘s–Moser equation, + + + = (+) where m and k are positive integers, is conjectured to have no solutions other than 1 1 + 2 1 = 3 1. The sums of three cubes cannot equal 4 or 5 modulo 9, but it is unknown whether all remaining integers can be expressed in this form.
3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1. The only partition of zero is the empty sum, having no parts. The order-dependent composition 1 + 3 is the same partition as 3 + 1, and the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition as 2 + 1 + 1. An individual summand in a partition is called a part.
Gauss [10] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct ...