Search results
Results from the WOW.Com Content Network
Glucose-6-phosphate isomerase (GPI), alternatively known as phosphoglucose isomerase/phosphoglucoisomerase (PGI) or phosphohexose isomerase (PHI), is an enzyme ( EC 5.3.1.9) that in humans is encoded by the GPI gene on chromosome 19. [4] This gene encodes a member of the glucose phosphate isomerase protein family.
In enzymology, a glucuronate isomerase (EC 5.3.1.12) is an enzyme that catalyzes the chemical reaction D-glucuronate ⇌ {\displaystyle \rightleftharpoons } D-fructuronate Hence, this enzyme has one substrate , D-glucuronate , and one product , D-fructuronate .
Glucose isomerase (also known as xylose isomerase) catalyzes the conversion of D-xylose and D-glucose to D-xylulose and D-fructose. Like most sugar isomerases, glucose isomerase catalyzes the interconversion of aldoses and ketoses. [24] The conversion of glucose to fructose is a key component of high-fructose corn syrup production.
The transfer of the glucose 6-phosphate is carried out by a transporter protein (T1) and the endoplasmic reticulum (ER) contains structures allowing the exit of the phosphate group (T2) and glucose (T3). [7] Glucose 6-phosphatase consists of 357 amino acids, and is anchored to the endoplasmic reticulum (ER) by nine transmembrane helices.
Coupled assay for hexokinase using glucose-6-phosphate dehydrogenase. Even when the enzyme reaction does not result in a change in the absorbance of light, it can still be possible to use a spectrophotometric assay for the enzyme by using a coupled assay. Here, the product of one reaction is used as the substrate of another, easily detectable ...
PGM is an isomerase enzyme, effectively transferring a phosphate group (PO 4 3−) from the C-3 carbon of 3-phosphoglycerate to the C-2 carbon forming 2-phosphoglycerate.There are a total of three reactions dPGM can catalyze: a mutase reaction resulting in the conversion of 3PG to 2PG and vice versa, [4] [5] a phosphatase reaction creating phosphoglycerate from 2,3-bisphosphoglycerate, [6] [7 ...
The cleaved molecule is in the form of glucose 1-phosphate, which can be converted into G6P by phosphoglucomutase. Next, the phosphoryl group on G6P can be cleaved by glucose 6-phosphatase so that a free glucose can be formed. This free glucose can pass through membranes and can enter the bloodstream to travel to other places in the body.
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.