enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed allele - Wikipedia

    en.wikipedia.org/wiki/Fixed_allele

    In population genetics, a fixed allele is an allele that is the only variant that exists for that gene in a population. A fixed allele is homozygous for all members of the population. [1] The process by which alleles become fixed is called fixation. For this hypothetical species, the population in the topmost frame exhibits no fixed allele for ...

  3. Fixation (population genetics) - Wikipedia

    en.wikipedia.org/wiki/Fixation_(population_genetics)

    In the absence of mutation or heterozygote advantage, any allele must eventually either be lost completely from the population, or fixed, i.e. permanently established at 100% frequency in the population. [2] Whether a gene will ultimately be lost or fixed is dependent on selection coefficients and chance fluctuations in allelic proportions. [3]

  4. Human variability - Wikipedia

    en.wikipedia.org/wiki/Human_variability

    Over time, one allele will be fixed when the frequency of that allele reaches 1 and the frequency of the other allele reaches 0. The probability that any allele is fixed is proportional to the frequency of that allele. For two alleles with frequencies p and q, the probability that p will be fixed is p.

  5. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...

  6. Genetic drift - Wikipedia

    en.wikipedia.org/wiki/Genetic_drift

    Once an allele becomes fixed, genetic drift comes to a halt, and the allele frequency cannot change unless a new allele is introduced in the population via mutation or gene flow. Thus even while genetic drift is a random, directionless process, it acts to eliminate genetic variation over time.

  7. General selection model - Wikipedia

    en.wikipedia.org/wiki/General_selection_model

    The general selection model (GSM) is a model of population genetics that describes how a population's allele frequencies will change when acted upon by natural selection. [ 1 ] [ better source needed ]

  8. Allele frequency spectrum - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency_spectrum

    The allele frequency spectrum can be written as the vector = (,,,,), where is the number of observed sites with derived allele frequency .In this example, the observed allele frequency spectrum is (,,,,), due to four instances of a single observed derived allele at a particular SNP loci, two instances of two derived alleles, and so on.

  9. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/Hardy–Weinberg_principle

    Punnett square for three-allele case (left) and four-allele case (right). White areas are homozygotes. Colored areas are heterozygotes. Consider an extra allele frequency, r. The two-allele case is the binomial expansion of (p + q) 2, and thus the three-allele case is the trinomial expansion of (p + q + r) 2.