Search results
Results from the WOW.Com Content Network
In population genetics, a fixed allele is an allele that is the only variant that exists for that gene in a population. A fixed allele is homozygous for all members of the population. [1] The process by which alleles become fixed is called fixation. For this hypothetical species, the population in the topmost frame exhibits no fixed allele for ...
In the absence of mutation or heterozygote advantage, any allele must eventually either be lost completely from the population, or fixed, i.e. permanently established at 100% frequency in the population. [2] Whether a gene will ultimately be lost or fixed is dependent on selection coefficients and chance fluctuations in allelic proportions. [3]
Over time, one allele will be fixed when the frequency of that allele reaches 1 and the frequency of the other allele reaches 0. The probability that any allele is fixed is proportional to the frequency of that allele. For two alleles with frequencies p and q, the probability that p will be fixed is p.
The general selection model (GSM) is a model of population genetics that describes how a population's allele frequencies will change when acted upon by natural selection. [ 1 ] [ better source needed ]
The allele frequency spectrum can be written as the vector = (,,,,), where is the number of observed sites with derived allele frequency .In this example, the observed allele frequency spectrum is (,,,,), due to four instances of a single observed derived allele at a particular SNP loci, two instances of two derived alleles, and so on.
Nevertheless, in a smaller sized gene pool, there is a higher chance of a stochastic event in which deleterious alleles become fixed (genetic drift). While evolutionary theory states that expressed deleterious alleles should be purged through natural selection, purging would be most efficient only at eliminating alleles that are highly ...
This theory implies that purifying selection is more efficient in the haploid stage of the life cycle where fitness effects are more fully expressed than in the diploid stage of the life cycle. Evidence supporting the masking theory has been reported in the single-celled yeast Saccharomyces cerevisiae. [8]
[7] [8] XCI is a chromosome-wide monoallelic expression, that includes expression of all genes that are located on X chromosome, in contrast to autosomal RME (aRME) that relates to single genes that are interspersed over the genome. aRME's can be fixed [9] or dynamic, depending whether or not the allele-specific expression is conserved in ...