Search results
Results from the WOW.Com Content Network
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
The dimeric silicon dioxide, (SiO 2) 2 has been obtained by reacting O 2 with matrix isolated dimeric silicon monoxide, (Si 2 O 2). In dimeric silicon dioxide there are two oxygen atoms bridging between the silicon atoms with an Si–O–Si angle of 94° and bond length of 164.6 pm and the terminal Si–O bond length is 150.2 pm.
Silicon oxynitride is a ceramic material with the chemical formula SiO x N y.While in amorphous forms its composition can continuously vary between SiO 2 and Si 3 N 4 (silicon nitride), the only known intermediate crystalline phase is Si 2 N 2 O. [2] It is found in nature as the rare mineral sinoite in some meteorites and can be synthesized in the laboratory.
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
Atomicity is the total number of atoms present in a molecule of an element. For example, each molecule of oxygen (O 2) is composed of two oxygen atoms. Therefore, the atomicity of oxygen is 2. [1] In older contexts, atomicity is sometimes equivalent to valency. Some authors also use the term to refer to the maximum number of valencies observed ...
In semiconductor physics, an acceptor is a dopant atom that when substituted into a semiconductor lattice forms a p-type region. Boron atom acting as an acceptor in the simplified 2D silicon lattice. When silicon (Si), having four valence electrons , is doped with elements from group III of the periodic table , such as boron (B) and aluminium ...
A silicon–oxygen bond (Si−O bond) is a chemical bond between silicon and oxygen atoms that can be found in many inorganic and organic compounds. [1] In a silicon–oxygen bond, electrons are shared unequally between the two atoms, with oxygen taking the larger share due to its greater electronegativity.
This is caused by the filling of the valence shell of the atom; a group 17 atom releases more energy than a group 1 atom on gaining an electron because it obtains a filled valence shell and therefore is more stable. In group 18, the valence shell is full, meaning that added electrons are unstable, tending to be ejected very quickly.